狠狠色丁香久久综合婷婷亚洲成人福利在线-欧美日韩在线观看免费-国产99久久久久久免费看-国产欧美在线一区二区三区-欧美精品一区二区三区免费观看-国内精品99亚洲免费高清

            產(chǎn)品展廳收藏該商鋪

            您好 登錄 注冊

            當前位置:
            美國布魯克海文儀器公司>技術(shù)文章>測量應用案例-20191210

            技術(shù)文章

            測量應用案例-20191210

            閱讀:165          發(fā)布時間:2019-12-24

            文獻名:Different dynamic accumulation and toxicity of ZnO nanoparticles and ionic Zn in the soil sentinel organism Enchytraeus crypticus 

             

            作者Erkai Hea, Hao Qiubc, Xueyin Huanga, Cornelis A.M.Van Gesteld, Rongliang Qiuae 

            aSchool of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China

            bSchool of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

            cShanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China

            dDepartment of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands

            eGuangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China

             

            摘要:There is still no consensus over the specific effects of metal-based nanoparticles when compared with the conventional metal salts. Here, the accumulation and toxicity of ZnO-NPs and ZnCl2 in Enchytraeus crypticus over time (1–14?d) were investigated using a sand-solution exposure medium and applying a toxicokinetics and toxicodynamics approach. For both Zn forms, body Zn concentration in the organisms was dependent on both the exposure concentration and exposure time, with equilibrium being reached after 714 days of exposure. Generally, the uptake and elimination rate constants (Ku and Ke1) were smaller for ZnO-NPs (5.74–12.6?mg?kg−1d−1 and 0.17–0.39 d−1) than for ZnCl2 (8.32–40.1?mg?kg−1d−1 and 0.31–2.05 d−1), suggesting that ionic Zn was more accessible for E. crypticus than nanoparticulate Zn. Based on external exposure concentrations, LC50s for ZnO-NPs and ZnCl2 decreased with time from 123 to 67 Zn mg L−1 and from 86 to 62 Zn mg L−1, reaching an almost similar ultimate value within 14?d. LC50s based on body Zn concentrations were almost constant over time (except for 1?d) for both ZnO-NPs and ZnCl2, with overall LC50body of Zn being 1720 and 1306?mg?kg−1 dry body weight, respectively. Body Zn concentration, which considers all available pathways, was a good predictor of dynamic toxicity of ZnCl2, but not for ZnO-NPs. This may be attributed to the specific internal distribution and detoxification mechanisms of ZnO-NPs. The particles from ZnO-NPs dominated the accumulation (>75%) and toxicity (100%). Our results suggest that dynamic aspects should be taken into account when assessing and comparing NPs and metals uptake and consequent patterns of toxicity.

            收藏該商鋪

            登錄 后再收藏

            提示

            您的留言已提交成功!我們將在第一時間回復您~

            對比框

            產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 在線交流

            掃一掃訪問手機商鋪
            010-62081908
            在線留言